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Surface magnetization of aperiodic Ising systems: 
a comparative study of the bond and site problems 

LoYc Turban, Pierre-Emmanuel Berche and Bertrand Berche 
Laboratoire de Physique du Solidet, Univenit6 Hen" P o i n c d  (Nmcy I), BP 239, 
F-54506 Vandewre I& Nancy cedex, France 

Received 27 May 1994 

Abstract We investigate the influence of aperiodic perturbations on the critical behaviour at a 
second-order phase transition. The bond and site problems are compared for layered systems 
and aperiodic sequences generated through substitution. In the bond problem. the interactions 
between the layers are disuibuted according to an aperiodic sequence whereas in the site problem, 
the layers themselves follow the sequence. A relevan-imlevance criterion introduced by Luck 
for the bond problem is extended to discuss the site problem. It involves a wandering exponent 
for pairs, which can be larger than the one considered previously in the bond problem. The 
surface magnetization of the layered two-dimensional Ising model is obtained, in the extreme 
misotropic limit, for the perioddoubling and ThusMorse sequences. 

1. Introduction 

The discovery of quasicrystals (Schechtman er al 1984) has opened a new field of research 
which has been quite active during the last ten years (see Henley 1987, Janssen 1988, Janot 
er nl 1989, Guyot et nl 1991, Steinhardt and DiVicenzo 1991). On the theoretical side, 
quasiperiodic or, more generally, aperiodic systems are interesting because they appear as 
intermediates between periodic and random systems. Thus, phase transitions in such systems 
are expected to display a rich and unusual critical behaviour. 

Studies of the Ising model (Godreche et al 1986, Okabe and Niizeki 1988, SBrensen 
er al 1991), the percolation problem (Sakamoto er al 1989, Zhang and De'Bell 1993) 
and the statistics of self-avoiding walks (Langie and Igl6i 1992) on the two-dimensional 
Penrose lattice did not show any change of critical exponents. Universal behaviour was also 
obtained in three dimensions (Okabe and Niizeki 1990). But some systems were also found 
for which the aperiodicity has some influence. One may mention interface roughening in 
two dimensions for which a continuously varying roughness exponent was obtained with 
the Fibonacci sequence (Henley and Lipowsky 1987, Garg and Levine 1987). 

Some exact results have been obtained for the layered Ising model with an aperiodic 
modulation of the interlayer couplings (IgMi 1988, Doria and Satija 1988, Benza 1989, 
Henkel and Patk6s 1992. Lin and Tao 1992, Turban and Berche 1993). The problem 
was studied in the extreme anisotropic limit where it leads to a one-dimensional aperiodic 
quantum king model (QIM) in a transverse field, which is often easier to handle (Kogut 
1979). For the Fibonacci and other sequences, the specific heat was found to display the 
Onsager logarithmic singularity but for different sequences the singularity is washed out 
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(Tracy 1988), like in the randomly layered king model (McCoy and Wu 1968a, 1968b, 
McCoy 1970). 

The situation was clarified in a recent study of the bulk properties of the QIM (Luck 
1993a). In this work, Luck proposed a generalization for aperiodic systems of the Harris 
criterion (Harris 1974). allowing a classification of critical aperiodic systems according to 
the sign of a crossover exponent 0. This exponent involves the correlation length exponent 
of the unperturbed system v and the wandering exponent w governing the size-dependence 
of the fluctuations of the aperiodic interactions (Dumont 1990). The criterion has also 
been applied to the case of anisotropic critical systems with uniaxial aperiodicity (Igl6i 
1993). explaining the interface roughening results. It was later generalized to d-dimensional 
aperiodicities in isotropic critical systems (Luck 1993b). The form of the singularities with 
a relevant aperiodic perturbation has been discussed by Ig16i using scaling arguments (Igl6i 
1993). Recently, some exact results for the surface magnetization of the QIM have also been 
obtained for irrelevant, marginal and relevant aperiodicities (Turban et a[ 1994, Igl6i and 
Turban 1994) and conformal aspects have been discussed (Grimm and Baake 1994). 

Most of the systems heated so far dealt with an aperiodic distribution of the couplings, 
i.e. In magnetic systems, this corresponds to an aperiodic 
distribution of the atoms mediating the interactions in a superexchange mechanism. In 
the present work, we study the surface magnetization of the aperiodic QIM, comparing the 
bond problem examined previously (Turban et d 1994, Ig16i and Turban 1994) to the site 
problem for which the magnetic moments are distributed aperiodically and interact through 
a direct exchange mechanism. Then the couplings depend on the nature of the two atoms 
involved in the interaction. We show that, for a given aperiodic sequence, the perturbation 
may be more efficient for the site than for the bond problem and may lead to a different 
critical behaviour. Exact results are obtained for two typical aperiodic sequences. 

In section 2 we present the Hamiltonian of the QIM and give the expression of the 
surface magnetization, defining the parameters for the bond and site problems. In section 3 
we recall the properties of the substitution matrix, associated with an aperiodic sequence 
generated through an inflation rule, for the bond problem. The substition matrix adapted 
to the site problem is defined and compared to the previous one i n  section 4. Then the 
relevance-irrelevance criterion is discussed (section 5) and some general results about the 
QM critical coupling and surface magnetization are presented (section 6). The period- 
doubling and Thue-Morse sequences are studied in sections I and 8 and the final section 
contains a summiuy and discussion. 

with the bond problem. 

2. Hamiltonian and surface magnetization 

Let us consider a layered semi-infinite two-dimensional king model with exchange 
interactions K1 ( k )  parallel to the surface and K&) between the layers at k and k + 1 
(in ksT units). The extreme anisotropic limit (Kogot 1979) corresponds to K l ( k )  -+ 00, 
K z ( k )  + 0 while keeping the ratio hk = K & ) / K ; ( k )  fixed. In this expression 
K ; ( k )  = -; In tanh K l ( k )  is a dual coupling which goes to zero in the limit. Introducing 
a constant reference coupling K;, the dual coupling can be rewritten as hkK;. where hk 
is the transverse field. The transfer operator exp(-ZK;X) involves the Hamiltonian of a 
one-dimensional spin-i uantum chain. Introducing the two-spin interactions J, = h&, 
the QIM takes the following form: Z P  
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where the U’S are Pauli spin operators. 
The Hamiltonian can be put in diagonal form (Lieb et al 1961) 

71 = CE”(4ll” - 4) (2.2) 

using the Jordan-Wigner transformation (Jordan and Wigner 1928) followed by a canonical 
transformation to the diagonal fermion operators vu.  The fermion excitation spectrum is 
obtained as the solution of the eigenvalue problem 

where the & ( k )  and & ( k )  are the components of two normalized eigenvectors which satisfy 
the boundary conditions &(0)=@a(O)=O.  

In the ordered phase, the two-spin correlation function in the surface asymptotically 
gives the square of the surface magnetization, which can be written as the matrix element 
ms = ( I l c r f lO)  between the ground state and the first excited state of the Hamiltonian. 
For the semi-infinite system these two states become degenerate in the ordered phase, i.e. 
the lowest excitation cl vanishes. Using the above-mentioned transformation to diagonal 
fermions, it can be shown that m, is also given by $ ~ ( l ) .  According to the first equation 
in (2.3) with 6 ,  = 0, the other components of the eigenvector can be deduced from the 
recursion relation 

(2.4) 
hk 

@ i ( k  + 1) = --@i(k) = -h;’di(k).  
Jk 

The normalization of the eigenvector then leads to the surface magnetization (Peschel 1984) 

where the couplings Jk and hk in H only enter through their ratio Ax. Thus ms is the 
same as for a quantum chain with hk = 1 and an effective two-spin interaction 4. Such a 
reparametrization of the Hamiltonian is no longer possible when non-vanishing excitations 
are involved, if the transverse field is k-dependent. It follows that, in general, the effect of 
both interactions have to be considered. We shall come back to this point in section 5. 

In the bond problem the interactions parallel to the surface are constant, Kl (k )  = K I ,  
so that hk = 1 and hk = Kz(k) /K;  depends on the layer index k only through the value 
of the interlayer interaction. In the site problem, the effective coupling Ak = Kz(k)/K:(k) 
involves both the interaction inside layer k and the interaction between layers k and k + l .  
As a consequence, its value depends on the nature of the two layers and it is generally 
asymmetric. 

3. Substitution matrix for the bond problem 

In this section we give a brief summary of the properties of aperiodic sequences generated 
through an inflation rule. To simplify the presentation, we consider sequences involving 
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only two letters, A and B. In the bond problem these letters correspond to the interlayer 
interactions hAl he. The generalization to any number of letters is straightforward. 

A sequence is constructed through iterated substitutions on the two letters, A + S ( A ] ,  
B + S(B}. The process will be illustrated on the following example: 

S (A)  = B A A 

S{B] = A  B .  
(3.1) 

When the construction starts on A, after n steps, one obtains 

n = O  A 

n =  I B A A  

n = 2  A B B A A B A A  

whereas, starting on B. the iteration gives 

n = O  B 

n =  I A B  

n = 2  B A A A B  

Information about the sequence is contained in the substitution matrix 

(3.3) 

(3.4) 

where the matrix elements give the numbers of A or B in S (A]  or S(B) .  It is easy to check 
that the numbers L: and L i  of A and B in the sequence, after n substitutions, are given by 
the corresponding matrix elements in MY. They belong to the first (second) column when 
the construction starts on A (B). 

Let V, be the right eigenvectors and A. the eigenvalues of the substitution matrix such 
that 

MIVa = h.V,. (3.5) 

L f ,  L; and the length of the sequence, L,, are asymptotically proportional to A; where 
A ,  > 1 is the eigenvalue of M I  with largest modulus, wrhich is real and positive according 
to the Perron-Frobenius theorem. The asymptotic density, p& = limn-.w Lt/L,, can be 
deduced from the associated eigenvector with 

(3.6) 

The interactions in the bond problem can be rewritten as 
- 

(3.7) B AA = 1-4- p-61 hs = h - pk81 
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where 1 is the averaged coupling and 61 = AB-AA, the amplitude of the aperiodic modulation. 
At a length scale L,, the cumulated deviation from the average is 

where A2 is the second largest eigenvalue in modulus. The wandering exponent 

(3.9) 

governs the behaviour of the fluctuations of the interlayer couplings (Dumont 1990). 

4. Substitution matrix for the site problem 

Let us now consider the site problem. The two letters A and B then correspond to the two 
magnetic species which are distributed according to the aperiodic sequence, with the layers 
containing either A or B atoms. The QIM effective couplings AAA. AAB,  AEA and ABS depend 
on the nature of the two layers involved in the interaction through the intra- and interlayer 
couplings in the anisotropic classical system. 

In order to count the numbers of bonds of different types in the sequence after n 
substitutions, L,A", LtB, L,BA and L f B ,  one defines the two-letter substitution matrix 

nSIAIAIl  SlAlBl l  SIBIAII  nSIBIBll 
AA ~ A A  "AA AA 
SIAIAII  SlAlBll  SlBlAll  ,iSIBIBII 

1 2 0 0  
1 0 1 1  

0 0 1 0  
(4.1) nAB n A B  M2 = nS{AIAll  SIAIBII SIBIAII  % B l l )  ( 1  1 0 1) 

BA nBA nBA %A 

nBB n B B  n B B  n B B  
SlAlAl l  SiAlBIl SIBIAII  SIBPI1 

where, for example, n::'"" gives the number of AB-bonds in the sequence generated by 
S IB]  complemented by the first letter in S (A) .  Such a sequence builds the first part of 
the sequence which is obtained when the inflation rule is applied to a BA-bond. The same 
matrix M? has been considered before as resulting from substitutions on words of length 
two (Queffilec 1987). 

With the example of the previous section, the two-letter substitutions read 

S[A[A]] = B A A [B] 

S{A[BlJ = B A A [AI 

S(B[A]] = A  B [B] 

S(B[BI] = A  B [AI 

(4.2) 

and lead to the last matrix in (4,l) .  
As before, the matrix elements in each column of MZ give the numbers of bonds of 

each type (L;; i ,  j = A, B) in the sequence obtained after n iterations. These numbers 
are found in the two first (last) columns if the construction starts on A (B) and are given 
by the minimum of the two values appearing in each half-row. Due to end effects, one of 
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the values in each column differs by 1 from the true number of bonds in the sequence. At 
n = 2, for example, we have 

( 3  2 2 2 \  

(4.3) 

The first two columns correspond to a sequence constructed on A at the second iteration 
and lead to L t A = 2 ,  LtB=2,  LgA=2 and L,BB=l, in agreement with (3.2). 

Since the sum of the numbers of bonds starting with a given letter (i.e. with A, AA and 
AB bonds) gives the number of times this letter is met i n  the sequence for the bond problem, 
the matrix elements of MI are recovered by taking the sum of the two first elements and 
the sum of the two last elements in each column of Mz. The same results are obtained with 
the two first (last) columns since the corresponding sequences only differ through their last 
bond. The  same relation exists between the elements of M; and MY. 

Let a, be the eigenvalues and W, the right eigenvectors of Mz. The numbers of bonds 
Ly (i. j = A ,  E) in the sequence after n iterations are still proportional to the nth power 
of the largest eigenvalue al. Using the associated eigenvector, one obtains the asymptotic 
bond densities 

(4.4) 

Since the length of the sequence after n steps is also the sum of the L!, the leading 
eigenvalues of the two matrices are the same. Using the above-mentioned relation between 
the matrix elements of M2 and MI, the secular equation of MI can be factorized. The first 
factor gives back the secular equation of MI so that = A I  and A2 also belongs to the 
spectrum of Mz . The two last eigenvalues of Mz follow from the second factor and read 

= f [Q + b + >/(a - b)z + 4cd] (4.5) 

where 

Since the coefficients in (4.6) involve differences between the numbers of bonds in sequences 
which at most differ through their last bond, they are equal to 0 or kl. They are completely 
determined through the first and last letters in S(A)  and S(B} and can be obtained by 
inspection. The two eigenvalues are also equal to 0 or kl. When the two substitutions 
begin with the same letter, the coefficients and the eigenvalues Q, vanish. Other cases are 
listed in table I .  

As  in the bond problem, the fluctuations in the couplings At can be deduced from 
the substitution matrix, working in the basis of the right eigenvectors W,. The averaged 
coupling 1 is now given by 

(4.7) BB - 
A = p k A A ~ ~  + PL'IAB 4- P k A l s ~  4- p, ABB . 
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Table 1. Coefficients of the seculx equation (4.5) and mmsponding eigenvalues for 
substitutions staning with different letters. 

SlAl A . . . A  A . . . A  A . . . B  A . . . B  B . . . A  B . . . A  B . . . B  B . . . B  . .  
SIB)  B .  . . A  B . . . B  B . . . A  B . . . B  A . . . A  A . . . B  A . . . A  A . . . B  

a I I 0 0 - I  -1 0 0 

b 0 1 0 I 0 -1 0 -I 

c I 0 1 0 -1 0 - I  0 
d 0 0 I I 0 0 -I - I  
n, I ,  0 1. 1 I,-] I , O  -1,o - I , - I  1 , - I  -1.0 

The cumulated deviation from 
of Mz in modulus with, at a length scale L,, 

is generally governed by 0 2 ,  the second largest eigenvalue 

Here, the amplitude of the perturbation 62  is a linear combination of coupling differences, 
AAA - AAA - ).BA, . . . . and the wandering exponent for bonds can be written as 

(4.9) 

As a consequence, the wandering exponent changes when 1 0 2 1  = 1 > ]Al l .  Some 
examples are listed in the next section. 

5. Relevance-irrelevance criterion 

In both problems the aperiodic modulation introduces a thermal perturbation above 1 which, 
at a length scale L,  has an averaged density 

- Ai (L)  s , L w , - ~  Shi(L) = - i = 1 , 2  (5.1) L 

where the wi’s are the wandering exponents defined in (3.9) for the bond problem and (4.9) 
for the site problem. 

Changing the length scale by b= L/L’ leads to the renormalized density 

where v is the bulk correlation length exponent. As a consequence, the perturbation 
amplitude 6i transforms like 

6: = b W t - I + I / U  6i (5.3) 

with a crossover exponent @i = 1 + u(oi - 1) (Luck 1993a. Igl6i 1993). 
When @, is positive, the perturbation grows under rescaling, leading to a new fixed 

point with a different critical behaviour. When a, is negative, the perturbation decays 
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under rescaling and the critical behaviour is the same as for the homogeneous system. The 
crossover exponent vanishes in the marginal case and then the critical exponents may vary 
continuously with the perturbation amplitude, i.e. the system may display a non-universal 
critical behaviour. 

For the site problem, as mentioned at the end of section 2, the aperiodic modulation 
does not generally combine into a single effective parameter and one has to consider its 
effect on the transverse field and the two-spin interaction separately. The transverse field 
may take the values h A  or hB like Ik in the bond problem. Thus, the behaviour of the 
corresponding perturbation under rescaling is controlled by 91, whereas the perturbation 
of the two-spin interaction JL is governed by 42. Since, according to the discussion of 
section 4, w 2 ) w l ,  for any singular quantity the critical behaviour will depend on the sign 
of 9 2  in the site problem. as for the surface magnetization. 

Table 2 gives the two largest eigenvalues of the substitution matrices and the wandering 
exponents for typical aperiodic sequences. For the two-dimensional Ising model with 
w = 1, the borderline between relevant and irrelevant behaviour corresponds to wi = 0 
according to (5.3). The bond and site aperiodic perturbations are irrelevant for the 
Fibonacci sequence, whereas the site perturbation becomes marginal for the Thue- 
Morse sequence. The following sequences all have divergent fluctuations so that the 
perturbation behaves in the same way for both problems. The period-doubling and 
three-folding sequences lead to marginal perturbations but the non-universal exponents 
should differ for the bond and site problems. The last sequence is relevant in both 
cases. 

Table 2. Comparison between lhe bond and site problems for some lypicol sequences. The last 
two lines refer to lhe ZD king model. 

Sequence Fibonacci3 Thue-Morseb Period-doublinc Threz+foldin$ FivefoldC 

S I A I  B AB BE AEA AAAB 
StBI BA BA BA ABB BBA 
At rf  2 2 3 2 t r  
IA? l  r - 1  0 I I 3 - r  
1 %  7 - 1  I 1 I 3 - r  
01 -I  --oo 0 0 0.251 57 
0 2  -1 0 0 0 0.251 57 
Bond problem Irrelevant Irrelevant Marginal Marginal Relevant 
Site problem irrelevant Marginal Marginal Marginal Relevant 

See e.g. Tncy (1988). 
See e.g. DeUing et af (1983a). 
This sequence apppem in connection wilh the perioddoubling cascade (Collet and Eckmann 1980). 

This sequence is connected with tilings of the plane with fivefold symmeuy (Godriche and Luck 1992. Codrhhe 

r = ( I  t &)/2 is the golden mean. 

* This is the folding sequence of a dragon curve (Dekking ern1 1983b3. 

and Lancon 1992). 

6. General results: critical coupling and surface magnetization 

The critical coupling of the inhomogeneous QiM is such that (Pfeuty 1979) 
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For the bond problem, we take AA = h as a reference coupling and he = hr. We associate 
a digit j k  with the k t h  letter in the sequence. With fk = 0 for A and f k  = 1 for B. 
the k th  coupling can be written as hk = hrf*. The critical coupling h, is such that 
limL,,A,r"'IL = I with 

J 

n, = f k  
k= l  

Finally, one obtains 

(6.3) ), - p k  c -  

where pm = p z  as defined i n  (3.6). 
For the site problem. we take the following parametrization: 

AAA = h AAB = hu XBA = hu ABB = h r .  (6.4) 

Due to the transverse field contribution, 
coupling can be written as 

is generally different from AEA, The effective 

(6.5) hk = hr i t  f k i  I 6,) - f* f*+i v / i  - f k  ft- I 

and using (6,1), the critical coupling is such that 

where s = uu and 

i 
mj = f k f k + l  

k=l  

The critical coupling is then given by 

(6.7) 

Alternatively, using the asymptotic densities defined in (4.4), the critical coupling can be 
expressed as 

(6.9) 

According to (2.5) and making use of (6.2) with no=O, the surface magnetization for 

AB - 8* - 88 A, =U-& v Pw r Pw , 

the bond problem is given by 

(6. IO) 

For the site problem, using (2.3, ( 6 3 ,  (6.5), and (6.7) with mo = 0. we have 
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Since f k  = 0, I, one may use the identity 

a f k  = I + (R - ~ ) f k  (6.12) 

to rewrite the sum as 

C(A, r , s ,  u) = u2h [ 2 1  (h, 5, s) + (U-2  - I)& (h, s)] (6.13) 
S S 

where 

Let us consider the case s = r ,  i.e. AABABA = A f i h ~ ~ ,  a common approximation in the 
case of symmetric couplings ( A A B = ~ B A ) .  Then Cl(A, 1, r)=S(h, r )  and, using the identity 
f ; + l  =(r-’fJ+I - l)/(i--’ - l) ,  one obtains 

(6.15) 

It follows that, for this particular combination of couplings, the critical behaviour is governed 
by $(A, r )  and is the same as in the bond problem. 

7. Period-doubling sequence 

The results of the preceding sections will now be illustrated on the examples of two 
sequences with different surface magnetization exponents for the bond and site problems. 
We begin with the period-doubling sequence (Luck 1993a, Collet and Eckmann 1980) which 
is marginal for both problems, according to table 2. 

Since the solution of the bond problem can be found elsewhere (Turban et a[ 1994), we 
only give a summary of the results. Starting the iteration on B and using the substitutions 
given in table 2, one obtains 

B 

B A  

B A B B  

B A B B B A B A  

B A B B B A B A B A B B B A B B  

. .  

The asymptotic density pm=$ leads to the critical coupling 

Ac = r-2’3 (bond problem) 

The form of the substitution is such that 

f w = l - h  h + l  = 1 

(7.2) 

(7.3) 
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from which one deduces 

nzj = 2 j  - n, nq+l = 2 j  + 1 - n, . (7.4) 

Splitting the sum S(I ,  r )  in (6.10) into even and odd parts and using (7.4), one obtains the 
recursion relation 

and the series can be written as an infinite product (Turban etal 1994) 

Let S(z) be the series expansion of S(I, r )  in powers of Z=(I,/I)~. According to @lo), 
near the critical point S(z) should display a power-law singularity with S(z) - (1 - z)-'", 
where B. is the surface magnetization exponent. It may be shown that, at the critical point 
z =  1, the truncated series SL(z) containing the first L terms in S(z) behaves as LZo' (Ig16i 
1986). Since the first 1 terms in (7.6) just contain the truncated series with L = 2", the 
surface magnetization exponent is given by (Turban et al 1994) 

(7.7) 

Let us now consider the site problem. The critical coupling, 

I, = ( rs ) - ' l3  (site problem) (7.8) 

follows from (4.4) and (6.9) with P A B = P B A = @ B =  f .  Putting (7.3) into (6.7). one obtains 
the recursion relations 

mzj = 2 j  - 2nj mzj+l = 2 j  + 1 - 2nj - fit;.+] (7.9) 

which can be used, together with those given in (7.4), to relate &, CZ and S. Splitting, as 
above, the sums in (6.14) into odd and even values of j ,  and using the identity 

6 - a  a - 1  
afk = + P f k  6 - 1  b - 1  

leads to 

C i ( h , x , y ) = a i + b i S [ ( h x y ) ' , ( x 2 y ) - ' ]  i =  1.2 

(7.10) 
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These relations, with .Y = r / s ,  y = s, and (6.13), with f~ = I ,  finally give 

C(A, r, s ,  U) = a  + bS [ , , rZ9 -1 S 

r2 
2s2 - r2uz 

r4 - s2 
a = A r  (7.12) 

A-*(? -U’) + h2r2(r2uZ - s2) 
r4 - s2 

b = l +  

which, together with (7.6), solves the site problem. Some examples of the temperature 
variation of the surface magnetization are shown in figures 1 and 2. Similar curves, for the 
bond problem, can be found in Turban er al (1994). 

The critical behaviour of the surface magnetization for the site problem is governed by 
the singularity of S(A‘, r ’ )  in (7.12). at i; given by (7.2). with A‘=hzr2, r‘=sr-2.  It follows 
that the critical coupling satisfies Azr2 =  ST-^)-^/^, in agreement with (7.8). Changing I ,  
into A i  = (sr-2) -2/3 in (7.7), one obtains the surface magnetization exponent for the site 
problem 

(7.13) 

When r =s, the critical exponent is the same as for the bond problem in (7.7), as shown 
in section 6. The variation with r Z / s  is shown in figure 3. One may notice that the value 
pS = $, corresponding to the surface exponent of the homogeneous two-dimensional king 
model at the ordinary surface transition, is recovered when s=uu=r* and A,=r-’.  This 
result is linked to the absence of AA pairs in the sequence. This value is also the minimum 
value of the exponent p,, i.e. the aperiodicity generally weakens the singularity. 

1 

0.8 

0.6 

0.4 

0.2 

n ” 
0 0.2 0.4 0.6 0.8 1 

( h C / V 2  
Figure 1. Temper” dependence of the surface magnetization (period-doubling. site problem) 
for different values of r .  u=OS and u=2. 
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I 

0.8 

* 0.6 
E 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 

0. C / V 2  

Figure 2. Temperature dependence of the surface mognetimtion (period-doubling, site problem) 
for different values of U ,  r=0.5 and $ = I .  

0.8 

0.75 

0.7 

0.65 
UW 

0.6 

0.55 

0.5 

0.45 1 
1 2 3 4 5 6 7 8 

r 2/s 

Figure 3. Variation of the surface magnetivtion exponent with r2/s in the site problem for the 
period-doubling sequence. 

8. Thue-Morse sequence 

As a second example, we consider the binary ThueMorse sequence (Dekking et a1 
1983a), which, as mentioned in table 2, leads to an irrelevant perturbation for the bond 
problem, treated in Turban er a1 (1994), and to a marginal one for the site problem. 
Starting with the letter A, the Thue-Morse subsitution in table 2 gives, successively, 
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A 

A B  

A B B A  

A B B A B A A B  

- A B B A B A A B B A A B A B B A  

. .  

In the bond problem, the critical coupling 

h, = r-'I2 (bond problem) (8.2) 

follows from the asymptotic density pm = f given by (3.6). The form of the substitutions 
immediately leads to the recursion relations 

fw = 1 - fk f i k t l  = htl 
which can be used in (6.2) to give 

"2, = j nZj+l = j + f ; + l .  (8.4) 

A chain with length L = 2 j  has a density equal to the asymptotic one, which explains the 
vanishing second eigenvalue 122 in table 2. 

Since the calculation of m, has already been described elsewhere (Turban et a1 1994). 
we just mention the results. The surface magnetization follows from 

where STM(X) = CL, f k x k  is the Thue-Morse series (Dekking et al 1983a). Near the 
critical point, one obtains 

where t = 1 - (h./1)* is the deviation from the critical point. The surface magnetization 
exponent takes its unperturbed value, 

In the site problem, with p&*=pZB=% and ~ & ~ = p : * = i ,  the critical coupling takes 
the form 

(site problem). (8.7) 

= 4, as expected for an irrelevant perturbation. 

- -1/6s-'/3 c - r  

Making use of (8.3), equation (6.7) leads to 

mzj = m2j+1 = nj+, - m, . 
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The same result is obtained for even and odd terms because the two letters occur within 
successive pairs along the sequence, so that fw+,f%+2 =O. 

With a sequence starting on A, the front factor disappears in the sum C ( h ,  r ,  s, U) 
of (6.13). The Xi’s. defined in (6.14), satisfy the functional equations 

c ~ ( A , x , Y )  = C a i i ~ j ( ~ 2 y , ~ - ’ , ~ )  i = 1 , 2  
j=1.2 

a l l = I + h -  a12 = x  -’ -A-’ + ( h x y ) - *  - 1 (8.9) 

-2 - A-2 a22 = x -2 
0 2 ,  = h  

which, as usual, are obtained by splitting the sums into even and odd parts and using (8.4), 
(8.8), as well as the identity (6.12). 

Through iteration, at step k 2 1, the arguments of the Cis become 

Ak = A- x Y-  xk = y;l = x ( - l ) k  (8.10) 71 p-I+(-]y),3 ?*-I 

and the functional equations (8.9) can be rewritten in matrix form as 

with 

Then, 

(8.11) 

(8.12) 

(8.13) 

where the components of the vector on the right follows from the form of the Si’s when 
k+m. 

Equations (6.1 l), (6.13), and (8.11)-(8.l3), formally solve the problem. The temperature 
variation of the surface magnetization is shown in figures 4 and 5. 

It seems difficult to obtain an explicit expression for the surface magnetization since 
the form of the matrix Tk depends on the index k .  But some progress can be made 
concerning the critical behaviour, using the same scaling method as for the period-doubling 
sequence, i.e. looking at the L dependence of the truncated series C L ( Z )  at the critical point 
~ = ( L / h ) ~ = l .  

With the actual values of the arguments in (6.13), x = r / s  and y = s, equation (8.10) 
gives 

(8.14) 

so that, at the critical point, the matrix elements in Tk depend on k only through ( -1 ) ‘ .  
Let us introduce the product U=T+, T+ with 

(8.15) 
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I 

0 0.2 0.4 0.6 0.8 I 

Figure 4. Temperature dependence of the surface magneliration (Thue-Morse. site problem) 
for different values of I, u=O.5 and s= I .  

I I 

Figure 5. Temperature dependence of the surface magnetization (Thue-Morse, site problem) 
for differem values of U, ? = O S  a n d s = l .  

Taking L =2', the first L terms in Z L ( Z )  are obtained, up to L-independent factors, keeping 
the first 21 terms in the infinite product of (8.13). Due to the form of the matrix elements 
in (8.12), they belong to the first column of the matrix resulting from the finite product. 
Thus, using (8.15), they are also given by U'(:) at the critical point. After diagonalization, 
one obtains 
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where the last term is the lth power of  the largest eigenvalue of  U. Finally, the surface 
magnetization exponent reads 

(8.17) 

The surface magnetization exponent is shown as a function of r / s  in figure 6. The minimum 
value ps = 1, corresponding to the homogeneous system and to the bond problem behaviour 
as well, is reached when r =s. 

1 1.5 2 2.5 3 3.5 4 
0.48 

0 0.5 
d s  

Figure 6. Variation of the surface magnetization exponent with r j s  in the site problem for the 
Thue-Morse sequence. 

9. Conclusion 

We have presented a comparative study of  the influence of bond and site aperiodicities 
on the critical behaviour at a second-order phase transition. One-dimensional sequences 
generated through substitution, corresponding to an uniaxial aperiodic modulation, have 
been discussed. The extension of the Harris criterion to the site problem requires the 
knowledge of the eigenvalues of a substitution matrix which is linked to the distribution of 
pairs of successive letters along the sequence. For sequences with 11\21> 1, the relevance- 
irrelevance criterion is the same in the bond and site problems. When lAzl< 1, the aperiodic 
perturbation may become more dangerous in the site problem, depending on the form of 
the substitution. 

Exact results have been obtained for the surface magnetization of layered k ing  aperiodic 
systems. The period-doubling sequence leads to a marginal perturbation for both problems, 
but with different non-universal exponents. The Thue-Morse aperiodic modulation, which 
is irrelevant for the bond problem, becomes marginal for the site problem, where the surface 
magnetic exponent is non-universal. 

Among the possible extensions of this work, one may mention the treatment of 
substitutions with more than two letters and, more interesting, the study of higher- 
dimensional aperiodic perturbations in isotropic or anisotropic critical systems. 
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